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Abstract 

 
This paper looks at the issue of the coloration of plants and the ability to estimate the 
concentrations of certain colorants such as anthocyanins based upon commonly available 
spectrometer methods. The approach is to begin with classic color theory which has been 
employed extensively elsewhere and then to develop a model for reflectance using the Beer's 
model and in turn provides a set of methodologies to estimate the concentrations of all colorants in 
a cell. This approach can then be employed in several areas; first in the determination of the 
genetic networks generating the colorants, the gene expression identification problem, and 
secondly the issue of flower color patterning, namely tessellation. 
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1 INTRODUCTION 
 
Flower color is a direct result of light absorption in the cells of the petals and sepals. The process of absorption may 
be complex and many but the result is that the reflected light spectra will absorb certain parts of the visible spectrum 
and allow other parts to be reflected back out by the cell walls. To some degree there are many complex and yet to 
be understood or characterized processes at play. However, if one is seeking to estimate the concentrations of the 
chemical elements which lead to the coloration, then it is possible to do so using the means and methods proposed 
herein. 
 
Once the concentrations of such elements such as the anthocyanins has been determined then it is possible to use 
that data and work backwards to assess and determine the nature and workings of the genetic pathways which have 
given rise to these colorants (see McGarty, 2007). In this paper we develop a method to determine the 
concentrations of colorants resulting from secondary pathways in flowers. The method employs the use of standard 
spectroscopic techniques and using the basic principles of color absorption provides a detailed set of methodologies 
to estimate separate concentrations. It is assumed that for each secondary pathway colorant its individual profile of 
extinction or absorption is known. 
 
In this paper we address several issues. The objective of addressing these issues will be twofold. First we will need 
the understanding to proceed to the issues of understanding genetic pathways and to understand and explain the 
complex issue of flower color. The second use will be the establishment of a base to perform measurements and 
analyze the resulting data to validate the theories. Thus the issues we must join are: 
 
1. Color and Human Factors: In previous work we used the Tristimulus model to analyze the results obtained 

from the measurements in the genetic pathway efforts. We argue here that this is a limited approach which on 
the one hand must be understood and integrated in what we are doing but on the other hand must be gone 
beyond if we hope to obtain the resolution required. 

 
2. Color in Plants: This discussion is a complex set of issue regarding plant color. On the one hand we review 

and position the anthocyanins and other colorants and on the other hand develop constructs for explaining the 
passage, absorption and reflectance of light as color in plants. 

 
3. Measurements and Methods: Spectrometry has been a mainstay of assessing molecular structure especially of 

complex organic molecules. We review the physics of the underlying phenomena and then review the 
experimental techniques employed. We argue that the use of Fourier Transform Spectroscopy is best suited in 
this environment. 

 
4. Data Analysis and Concentration Estimation: Once the data has been captured, we then seek methods using 

the inverse of Beer's law to ascertain the concentrations of and types of anthocyanins and other colorants in the 
cells. Multiple methods are presented, developed and compared. 

 
2 CLASSIC COLOR THEORY 
 
Color can be viewed from several perspectives and the two focused on herein are the human eye and the measure 
power spectrum. The human eye views color in a complex manner since the eye receives color stimuli via sets of 
sensors which are tuned to three possible visible frequencies, the classic red, green and blue. 
 
The Figure below depicts the basic concept. We see a flower as a certain color. There is "white" light shown upon 
the flower and the light is reflected from the petals and sepals and what we perceive is a red flower. This perception 
is a combination of two things; what part of the incident white light is reflected, and how our eyes process that 
reflected light. Thus color has two meanings for us. First color is nothing more than a reflected spectrum of 
electromagnetic waves in the optical frequency band. Second it is what we perceive as a human observer and in turn 
name as a color. The latter approach can and often is quite subjective. This latter approach is the basis of print color, 
paints, dyes, pigments and the like where the end point is the presentation of some artifact of a desired color. It is the 
former or first approach we seek to use, namely what is there independent of the observer, specifically the spectrum. 
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In the context of color as perception there is a collection of terms which should be understood. Hue is a synonym for 
a color. Red is thus a hue as is orange. The hues cover the visible spectrum. Then there is the lightness, ranging from 
whit to black. The third element is the chroma which is the departure of the hue from gray. We show these elements 
below. 
 

Color

Hue=“Color”

Lightness=Black to White

Chroma=Departure from Grey
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The color school then takes three more steps. These are the CIE models for color. The first step is the Tristimulus 
models. The Tristimulus function is shown below. This is NOT a spectrum. In addition negative values mean more 
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positive stimulus.  These are also the result of extensive experimental modeling. The red, green and blue Tristimulus 
model as shown below characterizes three stimuli which affect the three receptors of color in the eye. 
 

RGB Color Matching Tristimulus 
Functions
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The above Tristimulus curve, called the color matching function, were experimentally determined through an 
experiment where a person looked at a test color centered at a wavelength as shown on the horizontal axis above and 
tried to match it by adjusting a red, blue and green lamp in the reference field. This could be accomplished for all 
regions except between 444 and 526 nm. In that region a red light had to be added to the test field to adjust the color 
to match. In effect the test color was changed by adding red. This adding of red is accounted for by the negative 
portion of the above curve2. 
  
Following this above model based upon experiment is the spectral approach called the standard observer consisting 
of the X Y Z model as shown below. They do effectively represent quasi spectral responses since they are all 
positive. It is possible to transform between the RGB and the XYZ formats. 

                                                           
2 See Berns p. 49. 
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CIE Standard Observer Curves
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The CIE Chart is a manifestation of how the three stimuli above can be added together to create a broad set of 
colors, hues. It is possible to go from red, thru green and then to blue. One need only mix the three stimuli in the 
proper ratio. Then other hues can also be generated. 

CIE Chart
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To understand this a bit better we analyze the RGB system first. We start with a source specified by intensity I 
dependent on wavelength. This allows us to define the following: 
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Note, as we had stated, the color matching primaries show negative values because the negative was the way the 
CIE arbitrarily represented an excess positive contribution required to be added to a primary to achieve the desired 
spectrum response while keeping the elements normalized. Specifically:  
 

( ) ( ) ( )r d g d b dλ λ λ λ λ= =∫ ∫ ∫ λ  

 
Now this also implies the following are to be true: 
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In a similar manner we can do the same for the XYZ system. This is done as follows: 
 

( )

( ) ( )

( ) ( )

( ) ( )

I  the spectrum of a specific sample
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Y= I y d

Z= I z d
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And as was the case for RGB we also have the normalizing factor. Not that it is this normalizing factor which 
assures our ability to deal with the triangular plot of color. 
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Finally there exists a set of transforms which allows one to convert from one to the other. This is shown below: 
 

r x
g A y
b z

A such that sums of r,g,b and x,y,z are unitary

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
Therefore for any color C we can write it in one of the following two manners: 
 
C rR bB gG

C xX yY zZ

= + +

= + +
 

 
Thus an x,y plane can be constructed such that any color can be characterized as a pair of coordinates (x,y). This is 
the CIE Chart which we have shown above. It must be noted that all of this analysis  is predicated on how "we" see 
color and not in any context of how it is created or the underlying physics of color. 
 
Now there are two other brief examples worth noting. First is the concept of additive colors, such as those we see 
when we add lights. This was the basis of what Newton did in his early experiments. By adding lights we can 
ultimately create white. We show that below. 
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Additive Primary Colors

Additive Colors combine to form white. Traditionally adding lights is 
additive whereas adding colorants, pigments or dyes, is subtractive.
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The opposite is the subtraction of light, and this is the result of adding pigments of different colors together in an oil 
painting. If we were to add all the colors together then we obtain black and not white. This is subtractive, for we are 
in reality removing colors by the use of those pigments. In many ways this is the difference between water colors 
and oil paint. We show this subtractive result below: 

Subtractive Primary Colors

Subtractive Colors form black. Subtractive mixing involves the removal, subtraction, 
of light from the mix. Removing all light ultimately results in black. Absorption only 
is called simple subtractive mixing whereas combining this with scattering is 
complex subtractive mixing.
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Notwithstanding the above detail and its use in many industrial processes, these methods used in classic colorimetry 
are methods that rely upon the human by necessity being part of the process. We when looking at plants, shall 
disregard the human. 
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3 SPECTRA AND MEASUREMENTS 
 
The measurement of absorption spectra can be accomplished by a variety of means. We present here two methods; 
classic spectrometry and Fourier Transform Spectrometry (FTS) also called Fourier Transform Infrared 
Spectrometry, FTIS. However FTS can be applied to the optical bands as well.  
 
The goals using these methods are as follows. First to determine the absorbance and extinction coefficients of the 
secondary products that are colorants. This means that solutions of purified anthocyanins, Peonidin for example, 
would be used and their absorbance and extinction coefficients determines for all wavelengths over the optical 
band3. This is accomplished for all targeted absorbents. Second, perform the same on all known colorants found in a 
target plant cell. This could include any secondary product or even proteins which have absorbent properties. 
Generally the other chemical elements react in an absorbent manner out of the optical band. Third, perform the 
analysis on target cells. Our approach is to perform this on a cell by cell basis thus requiring focused optical 
positioning. 
 
3.1 Classic Spectrometer 
 
We first look at the classic spectrometer. It uses two paths for transmission, one through a cell with the target 
secondary and another cell without any secondaries or colorants. The second cell is a reference cell. The reason for 
this approach is to calculate the difference in absorption. The spectrometer is shown below. It functions as follows: 
 

• Select a Reference and a Sample. Source Spectrum is to be determined using reference. 
• Send light from source through both sample and reference. The source must be broadband wavelength. 

There will be no need to regulate amplitude across the band since a difference signal is obtained and the 
result will be expressed as a ratio. 

• Chop the signals using electronic chopper so that half interval it is sample and other half it is reference. 
This can be accomplished with a time controlled electronic device or even a mechanical rotating wheel 
which can be synchronized to the measurement elements. 

• Send to Diffraction Grating to spread out signals over visible spectrum. 
• Sample from one end of spectrum to the other by mechanically sampling the diffraction grating spread out. 

Remember that the diffraction grating act as a prism and spreads out the signal spatially over the optical 
band. 

• Use the reference as the baseline and then measure the ratio or the difference of sample to reference and 
plot. This generally requires just a difference amplifier at the measuring point and synchronizing it with the 
chopping signal. 

                                                           
3 See Cantor and Schimmel, Part II, pp 380-388. 

 

9 
 



Spectrometer

Detector

Reference

Sample
Source

Chopper

Diffraction
Grating

6/5/2008 22

 
 

The spectrometer, as shown above, functions well for the determination of relative absorption. It is a long and 
sometimes cumbersome process because the screen in front of the detector is scanned slowly and this provides the 
signal used to ascertain the difference measurement. There is an issue of accuracy and precision in the collection of 
data and there is also the issue regarding the amount of light intensity requires. One should remember that as we 
spread the light out through the grating we see the spectrum now spatially but in so doing reduce the signal strength 
of each segment. The spectrometer has advantage and disadvantage in this configuration. 
 
3.2 Fourier Transform Spectrometer 
 
The FTS is a more recent embodiment of a spectrometer and it eliminates many of the accuracy and precision issue 
of the classic spectrometer. In many ways it may be viewed as a mini-CAT scanner in that it collects data which is 
the Fourier Transform of the desire waveform, namely the absorption spectrum. 
 
The FTS works as follows: 
 
1. A target sample is placed in front of a detector. The detector is a broadband detector and it provides at its output 
the integral of all the power entering across the optical spectrum. The optical spectrum will be the target spectrum of 
interest so we delimit the detector to that. We also assume we know the detector response and that this can be 
adjusted for by means of signal pre-emphasis. This means that the detector works as follows: 
 

( )P S f d= ∫ f  

 
Here P is the total power and S(f) is the power spectral density of the combined signal. We will look at that in some 
detail in a moment. Now we assume that the detector may itself have a spectral sensitivity given by H(f). Thus what 
we really receive if we do not pre-process is: 
 

( ) ( )P S f H f d= ∫ f  

 
Which may bias out answer? The way to avoid this is to do some pre-emphasis on the front end by using filters 
which do the following: 
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=

=

∫
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This is optical pre-emphasis filtering as one does with FM radio. This is a standard approach. 
 
2. Now let us go back to the input. We assume we have a flat frequency broadband source of radiation emitted from 
the source. If now we can also pre-emphasize that as well. Then this source follows two paths. Path 1 is a fixed path 
up and down and through the sample. Path 2 is one that goes to a reflector whose portion is changing uniformly in 
time and is accurately measures. This second path then send the same signal with the sole exception that it is phase 
offset from the main path. At times it may be totally in phase and at time totally out of phase. For every position x of 
the reflecting mirror we measure the combined power spectrum received, the integral of both signals, measure as 
their amplitude. 
 
3. It can be shown, we do so below, that if one collects the P values and notes them as P(x) then if we sample x 
properly we obtain samples of the Fourier Transform of the S(f) function. Thus collecting P(x) for the correct values 
of x and doing so with enough samples we can then perform an inverse Fourier Transform to readily obtain S(f). 
This is FTS. 

Fourier Transform Interferometer 

Power Detector

Sample

Moves from +/‐ x

( )Power S f df= ∫

1 2

1 0 0

( ) ( ) ( )

( ) exp( 2 / ) ( ) exp( 2 ( ) / ) ( )s

S f S f S f
or
S f j d f c S f j d x f c S fπ π

= +

= − + − +
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The details can be displayed simply as follows. The signal received is the direct and the reflected and they are 
combined in complex space to account for the phase difference as shown below: 
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The result is that P(f) is the real FT of S(f). 
 
FTS shows that we can obtain P(x) and it is the Fourier Transform of S(f) the absorption spectrum of the sample. 
We take P(x) for many values of x and then inverse FT.  
 
4 PLANTS, COLOR AND CHEMISTRY 
 
We can now consider plants and their colors. We have discussed this before and it is covered generally in the 
literature. However we want to focus on specific colorants. 
 
4.1 Molecular Issues 
 
We begin with the most common colorant, chlorophyll, the element which makes leaves green 
 

Chlorophyll

Chlorophyll contains many bonds 
and many outer shell electrons 
which in turn can absorb many 
photons across the incoming 
spectrum of visible light. They are 
absorbed by causing electrons to 
jump to more distant orbits and by 
exciting bonds between the 
constituent atoms. The result is the 
absorption of photons selectively 
across the optical spectrum.
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What causes absorption? The answer is a complex one but it may be simplifies into two parts/ first is the excitation 
of outer layer electrons, using the exact energy of the incoming photon. The second is the resonance excitation of the 
bonds in the carbon elements especially. There is a complex set of issues here. The correct manner to approach this 
is via the quantum mechanical methods. They are extremely complex due to the complex structure of the 
compounds. However phenomenologically it is easy to measure. 
 
We show these phenomena in the Figure below. 
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• Molecular: Electrons and bonds
– Electrons in outer shells

– Bond vibrations

C C

hch energy of photon absorbedε ν
λ

= = =
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4.2 Absorbance and Reflectance 
 
The next question is what are leaves green and flowers red? The answer is simple obtained by understanding 
absorbance and reflectance. In the figure below we show white light passing through a cell or sell filled with 
chlorophyll. Chlorophyll absorbs red and blue light and lets the green part of the spectrum pass unabsorbed. The 
absorption results from the very atomic interactions of the photons on the structure of the chlorophyll molecule we 
have shown previously.  
 
In the Figure below we show a white light as we may see in the sun and we shine it upon a cell or set of cells and we 
assume that it is absorbed but manages to pass through. The light emitted is green. 
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In contrast to absorbance we also have reflectance. Reflectance results when we shine white light upon a cell or set 
of cells and the light is refracted and in turn reflected back out into the general direction of the incident light. In the 
Figure below we show white light impinging on a cell and the cell is filled with chlorophyll. The chlorophyll 
absorbs the red and blue so the reflected light is green. This has the same characteristics as Transmittance. 

Reflectance
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The absorbance of chlorophyll is shown in the following Figure. We shall define absorbance latter. However what 
we see is that chlorophyll absorbs the low and high frequencies, the long and short wavelengths, and leaves the 
middle wave lengths relatively un-absorbed. This means that what is reflected back from a plant cell composed of 
chlorophyll is primarily green. Thus the green leaves of plants. Of course we will not see the same in flowers. In 
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addition, in the fall when the chlorophyll degrades as the plant goes dormant, what is left in the leaf are the 
anthocyanins which we shall show have a reddish orange tint. 

Chlorophyll
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The above Figure also depicts the two types of chlorophyll, but for our purposes we need not be concerned with 
them. 
 
4.3 Plant Cell Reflection 
 
The next issue is to understand how reflection occurs in plants. This is somewhat of a complex issue but has a 
simple explanation.  
 
A plant cell on the surface of a plant has a cell coating composed of cellulose, hemicelluloses, pectin and proteins 
which are all relatively transparent to light in the visible spectrum4. Cellulose is a long chain of glucose residues 
which form a ribbon. Visible light penetrates this wall easily and then is passed through the cell. The light then is 
reflected back out, most of it, and some continues to flow to lower layer cells.  
 

                                                           
4 See Taiz p. 22. 
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Plant Cell Reflectance

x
Back of the 
plant cell acts 
as a reflective 
surface. Most 
of radiation is 
reflected 
outward and 
very little 
passes 
through.

Several layers of plant cells, most is reflected, some 
penetrates to  lower layer and most again is reflected.

Within the cell there is a 
concentration of [C] of a 
substance which absorbs. The 
absorption depends on the 
wavelength, the concentration 
and the effective thickness.
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Reflection occurs in a plant cell as a result of the standard process of light being reflected at the boundary where we 
have an abrupt change in the index of refraction. This index changes as we go from air into the cell, and indeed even 
in the cell itself. The cell has water, proteins, colorants, a nucleus and many other constituents. The refraction at the 
interface changes the direction of propagation and the change may reflect the light out or further into the cell. The 
issue is dependent upon the incident angle and the index of refraction. We show a prototypical example below. 

Cells
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The Figure below shows another phenomenon. As the cell concentration increase more absorption occur and the 
color may actually change. Thus cell concentration is a major factor. In addition the thickness of the cells and the 
number of total cells will also be a significant factor and we shall discuss that next. 

Cell Concentration
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The process of intracell reflection is somewhat complex to say the least. It has been studied for over a century and 
there are still many theories to explain various cell structures. However for the case of a flower as Hemerocallis the 
presentation can be simplified. The Figure below, adapted from Lee, shows three paths through several layers of 
cells. One path bounces about and finally is reflected albeit attenuated by the colorant molecules. A second path 
manages to go through the cells and out the other side,. and a third path gets fully absorbed. 

Reflection Details

6/6/2008 42

A

B

C

Path A bounces thru the cells and out the other side. Path B reflects 
from a second layer cell and passes through an anthocyanin. Path C 
gets fully absorbed by an anthocyanin patch.
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The details of the above are generally difficult to analyze due to the random nature of the cells and the colorants. 
McGarty (1971)5 provides a summary of the approaches. However there are certain metrics which can be useful. 
The plant cell has a cellulose wall which is rigid. The dominant substance inside the cell, especially in a flower, is 
the vacuoles filled with water. The colorants are mixed in the cell. A plant cell is about 100 µm in width and about 
20-50 µm in depth. The wavelength of light in the visible region is 500 nm which is 20 time less. Thus scatter is not 
a major factor. However refraction and reflection are. The index of refraction of the cell is about 1.2-1.4 (see Lee)6 
and from Born and Wolfe (p. 41) we know that for an interface of this type the reflection and refracted components 
can be calculated. If we define A as the incident amplitude, with two components, parallel and perpendicular, then 
we can calculate the two components of the reflected component R and the refracted or transmitted component T. 
This is shown below: 
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T A
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T A
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nR A
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=
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−

= −
+
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Thus when we enter the index of refraction we see that transmission is greater than reflection for perpendicularly 
incident light. This analysis provides some insight into the nature of the cell. Also one must remember that the 
reflected light is reflected off the outer layer of the cell. This process then continues again as the light leaves the cell 
and enters ones below. 
 
We now move to a deeper analysis of the specific colorants and their impacts on the light entering the cells. 
 
5 COLORANTS FROM SECONDARY PATHWAYS 
 
The anthocyanin molecules is shown below. Note on the B ring we have six sites to which we can attach differing 
molecular chains. This will be an important element when we see the different configurations and their implications. 
 
5.1 Anthocyanins 
 
The anthocyanin or anthocyanidin molecule comes from two different secondary pathways in the plant cell. One is 
from the shikimic pathway and the other from the malonate pathway. This means that we have to understand both 
pathways to understand the ultimate abundance of the product. Anthocyanins are not the only elements which are 
secondary products which produce color. There are three classes of chemicals which give rise to color; 
anthocyanins, flavones or flavonols, and carotenoids. The basic structure of the anthocyanin is shown below. 

                                                           
5 See McGarty, 1971. This Thesis details the complex issues of multiple scattering in complex media such as a cell matrix. 
The Thesis also summarizes the experimental and theoretical work to the date of publication. Some extensions have been 
made since that time but the solution to the problem is still somewhat intractable except in a statistical sense. We use Beer's  
Law in the next section as a means to handle the complex nature of the optical problem. 

6 See Lee p. 84. The author states that the index of refraction of water in a cell is 1.3, with the molecules in solution in 
vacuoles is 1.34 and that cellulose of the wall has an index of refraction of 1.4. 
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The anthocyanin or Anthocyanidin molecules comes from two different pathways. In the figure below we have 
taken the basic resulting molecule and have shown that there are two elements; one is from the shikimic pathway 
and the other from the malonate pathway. This means that we have to understand both pathways to understand the 
ultimate abundance of the product. 

O

OH

OH

OH

A C

B1

2

3

4

5

6

Anthocyanidin

 

 
Before continuing we want to look at what the results would look like if we have different substitutes on the B ring. 
In the Table below we show that the terminations on the 3, 4 or 5 elements yield different results. The results give 
pelargonadin, cyanidin, delphinidin, peonidin, and petunidin. Each obviously named after their related flower and 
each resulting in an anthocyanin of a different color.  

O

OH

OH

OH

A C

B1

2

3

4

5

6

Anthocyanidin

Shikimic Pathway

Malonate Pathway
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Anthocyanin Colors

Anthocyanidin Substituents Color

Pelargonidin 4’-OH orange-red

Cyanidin 3’-OH, 4’-OH purplish red

Delphinidin 3’-OH, 4’-OH, 5’-
OH

bluish purple

Peonidin 3’-OCH3, 4’-OH rosy red

Petunidin 3’-OCH3, 4’-OH, 
5’-OCH3

purple

6/5/2008 40

 
In the Table below we have shown the colors of each of these as well as the weighting of a red, green and blue 
combination which best matches the color. Thus one can in an 8 bit color schemes, as one would find in any PC 
color scheme, get the resulting anthocyanin colors by blending the R, B, G elements to yield what we are seeking. 
This relating the colors back to RBG is critical since it get reflected in the ultimate flower color. 

 
Now if we assume we have only anthocyanins for color, and that we have the above combinations available, we ask; 
how do we combine these colors in a weighted manner to obtain the desired color? This approach is critical to the 
overall understanding. First we show by a weighted RBG we get the color we seek or the color which is presented. 
Then we assume that if we can then do the same for each anthocyanin, then we can create any desired color from a 
weighted collection of anthocyanins. This means that we can then determine what the relative percents of expression 
of any anthocyanin is and this lets us then go back to how strongly the gene for that anthocyanin is expressed. The 
model we presented earlier will be a key element in this overall process. 

Colors (R, G, B)

Petunidin (153, 0, 153)

Peonidin (255, 153, 204)

Delphinidin (153, 102, 255)

Cyanidin (255, 0, 255)

Pelargonadin (255, 102, 0)

 
No let us start with a simple expression. For any color we have by definition: 
 

Green δBlue βRed αColor ++=  
 
For example, we may have a (0,0,255), or a (128, 128, 128). Or any other set of combinations. 
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Likewise we could state this by means of some combination of anthocyanins. Namely: 
 

in][Delphinid c[Cyanidin] bdin][Pelargoni aColor ++=  
 
But we can relate the anthocyanins to the basic colors or red, blue and green as: 
 

[ ] GreenBluedonidinPel PPP δβα ++= Rearg  
 

[ ] GreenBluedCyanidin CCC δβα ++= Re  
 

[ ] D D DDelphinidin Red Blue Greenα β δ= + +  
 
If we define a color vector of Red, Blue and Green as: 
 

Red
C Blue

Green

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Thus if we define the mix vector as m then we have: 
 
Color = m T C 
 
Or: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

δ
β
α

m  

 
But we have the following matrix: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

DDD

CCC

PPP

δ  β  α
δ  β  α
δ  β  α

A  

 
These yields: 
 

Color = m T  A C 
 
The above analysis shows us that we can analytically determine the expression of the anthocyanins from the color of 
the cell by means of the above formulas. These are relative expressions but by benchmarking any one element we 
can make them all absolute in the cell as well. 
 
5.2 Other Color Elements 
 
Anthocyanins are not the only elements which are secondary products which produce color. There are three classes 
of chemicals which give rise to color; anthocyanins, flavones or flavonols, and carotenoids. The Table below depicts 
the different elements and their colors. The approach we took above for the anthocyanins can be taken for the 
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flavones and carotenoids as well. It should be noted that there may not be a unique solution here but there are 
several possible but they can be narrowed down by actual determination of one to three elements as baseline. 
 

Class Agent Color7

Anthocyanidin   
 Pelargonidin orange-red 
 Cyanidin purplish-red 
 Delphinidin bluish-purple 
 Peonidin rosy red 
 Petunidin purple 
 Malvinidin  
   

Flavonol   
 Kaempferol ivory cream 
 Quercetin cream 
 Myricetin cream 
 Isorhamnetin  
 Larycitrin  
 Syringetin  
 Luteolin yellowish 
 Agipenin Cream 
   

Carotenoids   
 Carotene orange 
 Lycopene Orange-red 

 
We now summarize the other element classes. 
 
5.2.1 Carotenoids 
 
Carotenoids are what is quite common in the carrot, the orange hew we see in that root. Its molecular structure is 
shown below, this is beta carotene. 
 

 
 

                                                           
7 See Taiz p. 334 for the Anthocyanidin color and Bernhardt for the Flavonol and carotene. 
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5.2.2 Flavones 
 
The flavonols, or flavones are quite similar to anthocyanin. Their structure is shown below. Note that we have 
compared it to that of anthocyanin. 
 

+
O

OH

OH

OH

A C

B1

2

3

5

6

O

OH

OH

OH

A C

B1

2

3

5

6

Anthocyanidin

Flavonol

OH

OH

O

 
 
We can also show how closely they relate in substitutions and colors. This is shown in the Table below. 
 

23 
 



Flavonol Anthocyanidin Substitution 
  3’ 5’ 

Kaempferol Pelargonidin H 
 

H 

Quercetin Cyanidin OH 
 

H 

Myricetin Delphinidin OH 
 

OH 

Isorhamnetin Peonidin OCH3 
 

H 

Larycitrin Petunidin OCH3 
 

OH 

Syringetin Malvinidin OCH3 
 

OCH3 

 
5.3 Anthocyanin Absorbance and Reflectance 

 
There have been many studies on the absorbance and reflectance of the various anthocyanins. The Figure below 
shows the results from a 1957 paper by Harborne. Harborne used the following procedure: 
 
"Spectrophotometry. All measurements were made with a Unicam SP. 500 spectrophotometer. The pure 
dry pigments were dissolved in methanol containing 0-01 % of conc. HCI and the solutions diluted to 
give an optical density reading in the range 0-800-1-300 at the visible maxima. For measurements in 
the ultraviolet region, the solutions of those anthocyanins obtained from eluting chromatograms were 
measured against a solution obtained from an appropriate blank area of the chromatogram, prepared 
at the same time as the corresponding pigment solution.  
 
For the purpose of measuring spectral shifts in the presence of aluminum chloride, three drops of a 
solution of the anhydrous salt in ethanol (5%, w/v) were added to the cell solution. Measurements of 
the shift were made as quickly as possible, since in some cases the color of the resulting solution faded 
on standing.  
 
For measuring the spectra of mixtures of Pelargonidin 3:5-diglucoside and p-coumaric, caffeic and 
ferulic acids, 1 m-mole of each compound in pure, anhydrous form was dissolved in 50 ml. of methanol 
containing 0-01% of conc. HCI. Portions (1 ml.) of these stock solutions were mixed together in 
varying proportions and the solution was made up to 10 ml. The compounds were previously purified by 
recrystallization and then dried in vacuo at 1000 over phosphorus pentoxide." 
 
He continues: 
 
"In searching for new methods of characterizing anthocyanins, it should be remembered that they are difficult 
compounds to deal with by the usual techniques of organic chemistry. In solution, they are unstable to light and pH 
changes. They are difficult to isolate in a pure state as a general rule. Many of them do not have sharp melting 
points and do not give meaningful results on elementary analysis. No suitable derivatives are known for 
characterizing them. The procedure of methylation and hydrolysis, commonly used with flavones for determining the 
position of sugar residues, is of limited value in the anthocyanin series…" 
 
The Harborne result for Pelargonidin is shown below. 
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Pelargonidin

http://www.biochemj.org/bj/070/0022/0700022.pdf

Note that the 
anthocyanidins 
block out the 
green colors 
found in 

chlorophyll. The 
absorb the 
green and 

reflect back the 
reds and 
purples.
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The following Table details all of the anthocyanins and their peak spectral line as well as the relative peaks 
compared to 440 nm8. 

                                                           
8 From Harborne, 1958. 
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Anthocyanidin Class Anthocyanidin Specific Wavelength 
nm 

E440/Emax 

Pelargonidin and 
derivatives 
 

Pelargonidin 
Pelargonidin 3-monoglucoside 
Pelargonidin 3-rhamnoglucoside 
Pelargonidin 3-gentiobioside 
Pelargonidin 3-diglucosido-7 (or 4'.)-glucoside 
 

520 
506 
508 
506 
498 

 

39 
38 
40 
36 
42 

 
Cyanidin and derivatives 
 

Cyanidin 
Cyanidin 3-monoglucoside 
Cyanidin 3-rhamnoglucoside 
Cyanidin 3-gentiobioside 
Cyanidin 3-xyloglucoside 
Peonidin 
Peonidin 3-monoglucoside 
 

535 
525 
523 
523 
523 
532 
523 

 

19 
22 
23 
25 
22 
25 
26 

 
Delphinidin and 
derivatives 
 

Delphinidin 
Delphinidin 3-monoglucoside 
Delphinidin 3-rhamnoglucoside 
Petunidin 
Petunidin 3-monoglucoside 
Malvidin With 5-hydroxyl group free 
Malvidin 3-monoglucoside With 5-O-substituent 
 

544 
535 
537 
543 
535 
542 
535 

 
 

16 
18 
17 
17 
18 
19 
18 

 

Pelargonidin and 
derivatives 
 

Pelargonidin 5-glucoside 
Pelargonidin 3:5-diglucoside 
Pelargonidin 3-rhamnoglucosido-5.glucoside 
Pelargonidin 3-diglucosido-5-glucoside 
Monardein 
Salvianin 

513 
504 
505 
503 
505 
505 

15 
21 
19 
21 
21 
20 

 
Cyanidin and derivatives Cyanidin 3:5-diglucoside 

Peonidin 3:5-diglucoside 
Peonidin 3-rhamnoglucosido-5-glucoside 
Peonidin 5-glucoside 
Peonidin 5-benzoate 
 

522 
523 
523 
528 
528 

 

13 
13 
12 
12 
11 

 
Delphinidin and 
derivatives 
 

Delphinidin 3:5-diglucoside 
Petunidin 3:5-diglucoside 
Petunidin 3-rhamnoglucosido-5-glucoside 
Malvidin 3:5-diglucoside 
Malvidin 3-rhamnoglucosido-5-glucoside 
Negretein 
 

534 
533 
535 
533 
534 
536 

 

11 
10 
10 
12 
9 
9 
 

 
 
6 ESTIMATING ANTHOCYANIN CONCENTRATIONS 
 
This section addresses the ability to determine the detailed concentrations of each of the colorants in a cell if one 
knows the cell effective optical length and the extinction coefficients for each of the constituents. The models for 
performing these tasks also show what the maximum resolution that can be achieved as well and the maximum 
number of constituents. The results in the maximum bounding resemble the same results that are found in such areas 
as ascertaining the accuracy in ambiguity functions for phased arrays. The latter problem was solved by the author in 
the mid 1970s. 
 
6.1 The Model 
 
Let us begin with a simple model of reflectance. We look at the Figure below and see a white light impinging on a 
cell and the light reflected back is seeing at one specific wavelength, frequency, as an attenuated version of what 
was transmitted at the wavelength. A is the amplitude of the transmission and the exponentially reduced A value is 
what is reflected. Thus if absorption is in the red and blue as we saw with chlorophyll then we reflect green and that 
is what we see. This is an application of Beer's Law9. Beer's law is a statistical approach to absorption. It reflects 
                                                           
9 See Cantor and Schimmel, pp. 60-68.  
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what experimentally is obtained and does not provide a detailed analysis as we had been developing in prior 
sections. 
 

Example

Incident “White” Light

Reflected “Anthocyanin” Light

[ ]( ) ( ) exp( ( ) )eff
i i i i iR A C xλ λ κ λ= −
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We define the reflect light at a specific frequency, wavelength, as follows: 
 

[ ]( ) ( ) exp( ( ) )eff
i i i i iR A Cλ λ κ λ= − x  

 
where [C] is a concentration and x is the effective thickness of the cell. 
 
Here R is the reflected light we see at the wavelength specified and at the ith anthocyanin. 
A is the incident light amplitude at the wavelength specified. The exponent is Beer’s law where C is the 
concentration of anthocyanin I and x the effective depth of that anthocyanin.  
 
Now we can write Beer's law for one or two or even more absorbents. We show the case for one and two absorbents 
as follows: 
 

1 1

k k

k k k k

dR C dx
R

or
dR C dx C dx
R

κ

κ κ+ +

= −

= − −

 

 
Note that the reduction in reflected light or in transmitted light is reduced by a result of the additive reduction of 
separate collisions with separate molecules.  
 

1
( ) ( ) exp( ( )[ ] ( ))

N

Total i i i
i

R A C xλ λ κ λ
=

= −∑ λ  
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The log of the ratio of intensities is the sum of the weighted concentrations. We assume we know the κ values for 
each absorbing element at each wavelength. Then we can use the above to estimate the separate concentrations  
 

1

( )( ) ln ( )[ ] ( )
( )

N
Total

i i i
i

RI C
A

λ xλ κ λ λ
λ =

= = −∑  

 
The problem is simply stated. We measure the intensity at say M values of wavelength and this gives us M samples. 
We then must find values of the [C] which give the best fit to the measurements obtained using the model assumed. 
That is for every wavelength, we define an error as the difference between the measurement and what the 
measurement would have been using the estimates of the [C] values and the best [C] values are those which 
minimize the sum of the squares of these errors. There are M measurements and N concentrations and M is much 
larger than N. That is: 
 

( )
2

1

1

[ ]

min( ( ) ( )

( )

( )[ ] ( )

n

M

m

N

ii i
i

Choose C  such that they minimize

I m I m

where
I m  is the mth measurement
and

I(m)= C xκ λ λ

=

=

−∑

∑
 

This is an optimization problem which can be solved in many ways. We address some of them in the next section. 
 
6.2 The Approaches 
 
Some Examples, this is an example of the Inverse Problem already solved by McGarty: 

 
1. CIE approach: This assumes that one can unravel the exponents of the x,y,z model. The problem is that we 

will not have an adequate number of degrees of freedom. 
2. Splines: This assumes we can generate curves and then separate them and then focus on their coefficients10. 
3. Steepest Descent: This is the incremental approach of best fit. It assumes we are trying to solve an 

optimization problem. 
4. Least Squares Fit: A statistical best fit method. 
5. Kalman Filter: This is the statistical solution using steepest descent but with correlation matrices. 
6. Matched Filter: This approach assumes we know the waveforms of each absorption curve for each colorant 

and that we receive a resulting absorption curve which is the sum of all of them, and that we then try to 
estimate the "amplitudes" of each curve, in effect the concentrations. 

 
We may define the problem as follows: 
 

                                                           
10 See Hildebrand pp. 478-494. The use of splines is an approach which tries to match coefficients of polynomials. 
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( )

)

i

i

Let R  be determinable for a given set of [C ] and let

R( ) be the measured received spectrum power and
I(  be the log of the received to incident power
at the wavelength

Find the set of [ C ], i=1...N,

λ

λ
λ

( )2
( ) ( ) ( )

 such that 

R R is minimized where R is the 

estimated received spectral element

λ λ λ−

 

 
We may also characterize the variables as follows: 
 

1

1 1

.
( ) ( 1)

.

( ) ( ) ( ) ( )

( )
.

( )
.

( )

n

T

n n

Let
C

x k x k

C
and
z k c k x k n k
where

k x

c k

k x
and for this case k and λ are identical increments

κ

κ

⎡ ⎤
⎢ ⎥
⎢ ⎥= = +
⎢ ⎥
⎢ ⎥
⎣ ⎦

= +

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
−⎣ ⎦

 

 
We now consider three possible approaches. 
 
6.2.1 Newton Steepest Descent 
 
The Newton Steepest descent approach is one where we define an optimization and this optimization results in 
solving a polynomial equation. We then employ an iterative method to solve that equation. We now seek the 
following: 
 

29 
 



1
1

2

1

Find the a such that:
[ ]

ˆ
.

..
.

ˆ
[ ]

such that

min ( )

n
N

M

ii
i

C
a

a
a

C

I I
=

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

⎡ ⎤
−⎢ ⎥

⎣ ⎦
∑

 

 
Let us recall the simple optimization result: 
 

2

1
( ) ( )

( ) ( ) 0

is the optimal point, so we seek to solve the vector equation:
g(a)=0

M

ii
i

n
n

h a I I

and
h a g a
a

=

⎡ ⎤
= −⎢ ⎥
⎣ ⎦

∂
= =

∂

∑

 

 
We can now state the general solution in terms of Newton’s Method11: 
 

1

1 1

1

1

( ) 0
is the desired result. Define:

( )( )

where we define:

.....
( )

.....

and the estimate at sample k+1 is:
ˆ ˆ ˆ ˆ( 1) ( ) ( ( )) ( ( ))

n

n n

n

g a

g aA a
a

g g
a ag a
g ga
a a

a k a k A a k g a k

−

=

∂⎡ ⎤= − ⎢ ⎥∂⎣ ⎦

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂∂⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢∂ ∂ ⎥∂⎣ ⎦
⎢ ⎥∂ ∂⎣ ⎦

+ = +

 

 
Note that we use this iterative scheme as one of several means to achieve the result. For each tuple of data we do the 
following: 
 

                                                           
11 See Athans et al, Systems, Networks and Computation, Multivariable Methods, McGraw Hill (New York) 1974, pp-115-122. 
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0

,

ˆ(0) ,  an n x 1 vector guess. Then we use the first data tuple:
ˆ ˆ ˆ ˆ(1) (0) ( (0)) (( (0))
where we use the difference:

ˆ(0) (0)
as the data entry element for each of the elements of a.

k measured

a a
a a A a g a

a a

=
= +

−
 

 
The Newton algorithm is but one of many possible algorithms. We know the conditions for Newton convergence. 
We can also estimate the accuracy of this algorithm as well. 
 
6.2.2 Kalman Filter 
 
The method of estimating the structural elements of the gene expression can be structured using a standard set of 
methodologies. In particular we use the two approaches. The approach was applied to estimating the constituent 
chemical concentrations of the upper atmosphere, namely the inversion problem, using transmitted light as the probe 
mechanism. In this case we seek to estimate the gene expression matrix using the concentrations of secondary 
chemicals as expressed in color concentrations. This is in many ways a similar problem. 
 
6.2.2.1 The Model 
 
Let us consider a six gene model, two color modifying genes and four control genes, two each. The model is as 
follows. First is a general linear model for the gene production: 
 

( ) ( ) ( ) ( )dx t Ax t u t n t
dt

= + +                                     

 
Then the entries are as follows: 
 

11 12 13

22

33

44 45 46

55

66

1

6

.. .. ..0..0..0
0... ..0...0...0...0
0...0... ..0...0...0
0...0...0... .. ..
0...0...0...0... ..0
0...0...0...0...0...

( ) ...

a a a
a

a
A

a a a
a

a
and

u
u t

u

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                             

 
And we assume a system noise which is white with the following characteristic: 
 
[ ]

[ ] 0

( ) 0

( ) ( ) ( )

E n t

and
E n t n s N I t sδ

=

= −

                                   

 
Now we can define: 
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1

2

...0
0...
A

A
A

⎡
= ⎢
⎣ ⎦

⎤
⎥

2

5

                                                          

 
Where we have partitioned the matrix into four submatrices. This shows that each gene and its controller are 
separate. Now we can determine the concentrations of each protein in steady state as follows, neglecting the 
Gaussian noise element for the time being: 
 

1 1
1

2 1

3 3

4 4
1

5 2

6 6

x u
x A u
x u

and
x u
x A u
x u

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                                                       

 
We argue that finding either the matrix elements or their inverse relatives is identical.  Thus we focus on the inverse 
elements. Now the concentrations of the anthocyanins are given by the 2 x 2 vector as follows: 
 

1

2

31 11

42 24

5

6

...0...0...0...0...0
0...0...0... ...0...0

x
x
xz c

Cx
xz c
x
x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤

= =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                      

 
The color model remains the same. 
 
6.2.2.2 The Estimator Model 
 
The system model is as follows. Let us begin with a model for the vector a that we seek: 
 

1

5

( ) 0 :

( ) ...

da t where
dt

a
a t

a

=

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                      

 
In this case we have assumed a is a 5 x 1 vector but it can be any vector. The measurement system equation is given 
by: 
 

( ) ( , ) ( )z t g a t w t= +                                                  
 
Where z is an m x 1 vector. In this case however we have for the measurement the following: 
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1

2

3

1

6

( ) ( , ) ( )

...

m
m
m

z t g a t w t
x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                    

 
We now expand in a Taylor series the above g function: 
 

0 0 0

0 0
1

( , ) ( , ) ( , ) ( ) ( )

1 ...
2

N
T

i i
i

g a t g a t C a t a t a t

a a F a aγ
=

= + −⎡ ⎤⎣ ⎦

− − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑

+

                 

 
Where we have: 
 

1 1

1

1

...

.. .. ..

...

n

m m

n

g g
a a

C
g g
a a

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥
⎢=
⎢ ⎥
∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

⎥                                                

 
Thus we have for the measurement: 
 

0 0 0( ) ( ) ( ) ( ) ( ) ( )z t C t a t g a C a a t= + −⎡ ⎤⎣ ⎦                    
 
We now use standard Kalman theory to determine the mean square estimate; 
 

1

1

1
0

1

ˆ( ) ˆ( ) ( ) ( ( ) ( ))

( ) ( ) ( ) ( ) ( )

( ( )

( ) ( ) ( )

T

T

N
T

i i
i

T

da t P t C t K z C t a t
dt

where
dP t P t C t K C t P t

dt

PF P K z g a

where

K t s E w t w s

γ

γ

−

−

−

=

= −

= − +

−

⎡ ⎤− = ⎣ ⎦

∑
                   

 
In discrete time we have the equation: 
 

[ ]1ˆ ˆ ˆ( 1) ( ) ( ) ( )a k a k PCK z k z k−+ = + −                   
 
This is identical to the equation we derived from the Newton method. 
 
6.2.3 The Matched Filter Approach 
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This is a different approach and it is an application of signal detection taken from classic communication theory. It 
assumes we have N signals and each signal shape is known but the amplitude of the individual signals is not known. 
Then we ask how we can estimate the amplitude of each signal if what we have is a received signal which is the sum 
of the N plus noise. We begin this approach as follows: 
 
Let us assume there are two waveforms bounded on an interval [0, T] 
 
Let 
 

1 1 1

2 2 2

1 2
0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) 0

orthog remain

orthog remain

T
orthog orthog

s t s t s t

s t s t s t

such that

s t s t dt

= +

= +

=∫

 

 
Now there are three questions which we may pose: 
 
1. Does such a decomposition exist, if so under what terms? 
 
2. What is a constructive way to perform the decomposition? 
 
3. Is there an optimum decomposition such that the "distance between the two orthogonal signals is maximized"? 
 
Namely: 
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Let us approach the solution using the theory of orthogonal functions12. Now we can specifically use a Fourier series 
approach. We do the following: 
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Likewise 
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Clearly FScos and FSsin are orthogonal. The residual functions r are the sin and cos elements respectively of the 
expansions. We could have just as easily transposed the sin and cos allocations between the two s functions. As to 
answering the third question we are effectively asking if the r residual functions can be minimized. The answer is 
not with a Fourier Transform. Then the question would be; is there another set of orthogonal functions which would 
minimize the residuals, namely: 
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are to be minimized. For a Fourier Transform as the orthogonal base we are left with residuals, R, at whatever they 
may be. However using the Fourier Transform approach we can extract the two signals as follows: 
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12 See Sansone, Orthogonal Functions. 
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Note we can interchange t and λ since they represent the same variable. We now have a "signal" with amplitudes to 
be determined and a bias which is known. Using standard "signal detection theory" we can readily solve this 
problem as well. This becomes the "matched filter problem"13.  
 
7 CONCLUSIONS 
 
What we have sought to accomplish in this paper is to describe color and it generation in plants and to present a set 
of methods and means to determine the constituents which give rise to those colors. In effect we have created a 
world view of color, apart from the classic colorimetry approach, and used this and the physical measurements 
related thereto to affect a method and means to determine concentrations of colorants in flowers. 
 
The simple application of Beer's law and the use of the known spectra of anthocyanins and other colorants allow us 
to use data from FTS to determine the concentrations of each colorant on literally a cell by cell basis. Beer's law is a 
simplistic but fairly accurate and consistent method. It would be interesting to explore the details of the transmission 
of light to a deeper level but the complexity of the cell structure prohibits that at this time. 
 
Having a methodology of the type developed herein we can now more readily examine the genetic pathways and 
expression systems in the genus Hemerocallis. This paper details multiple ways to ascertain concentrations on a cell 
by cell basis. 
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